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Abstract

Background aims. Natural killer cell (NK) cytotoxic activity plays a major role in natural immunologic defences against
malignancies. NK cells are emerging as a tool for adoptive cancer immunotherapies. Arabinoxylan rice bran (MGN-3/
Biobran) has been described as a biological response modifier that can enhance the cytotoxic activity of NK cells. This study
evaluated the effect of MGN-3/Biobran on NK cell activation, expansion and cytotoxicity against neuroblastoma cells.
Methods. NK cells were enriched with magnetic beads and stimulated with MGN-3/Biobran. NK cell activation was eval-
uated via analysis of their phenotype, and their expansion capability was tracked. The i vitro cytotoxic ability of the activated
NK cells was tested against K562, Jurkat, A673, NB1691, A-204, RD and RH-30 cell lines and the # vivo cytotoxic ability
against the NB1691 cell line. Results. MGN-3/Biobran stimulation of NK cells induced a higher expression of the activation-
associated receptors CD25 and CD69 than in unstimulated cells (P < 0.05). The expression of NKG2D, DNAM, NCRs
and TLRs remained unchanged. Overnight MGN-3/Biobran stimulation increased NK cell cytotoxic activity against all cell
lines tested i virro and decelerated neuroblastoma growth iz vivo. The mechanism is not mediated by lipopolysaccharide
contamination in MGN-3/Biobran. Furthermore, the addition of MGN-3/Biobran promoted NK cell expansion and
decreased T cells e vitro. Conclusions. Our data show that MGN-3/Biobran upregulates NK cell activation markers, stim-
ulates NK cell cytotoxic activity against neuroblastoma iz vitro and iz vivo and selectively augments the expansion of NK
cells. These results may be useful for future NK cell therapeutic strategies of the treatment of neuroblastoma.
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ntroduction risk of relapse in patients [2]. The cytotoxic activity

Natural killer cell (NK) cytotoxic activity plays a
major role in our natural immunologic defences
against the development of malignancies, as evi-
denced by the fact that decreased NK cell cytotoxic
activity is associated with a higher risk of tumor
development in healthy people [1]. Additionally, af-
ter hematopoietic stem cell transplantation, high NK
cell cytotoxic activity is associated with a decreased

of NK cells can be increased through healthy lifestyle
practices [3—5], biological response modifiers [6,7],
growth hormone [8] and cytokines [9—12]. Malig-
nant cells can decrease NK cell cytotoxic activity
through the release of suppressive cytokines and/or
the reduction of activating receptors on NK cells
[13,14]. NK cell activity can also be suppressed by
antibodies [15,16] and chemotherapeutic drugs [17].
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Figure 1. Cytokine levels in the culture supernatants were determined using the Cytometric Bead Array Flex Set (BD Biosciences) and
analyzed by flow cytometry using a BD FACSCalibur flow cytometer (BD Biosciences). (A) TNF-a levels, (B) IL-6 levels and (C) IL-8 levels.

Therefore, maintaining high NK cell cytotoxic ac-
tivity should be targeted in both cancer patients and
the healthy population.

MGN-3/Biobran is an arabinoxylan from rice
bran that has been modified by carbohydrate
hydrolysing enzymes from shiitake mushrooms [18].
This food supplement that has been reported to
enhance NK cell cytotoxic activity against tumors in
adult patients, i vitro and i vivo [19,20]. Further-
more, it has been described as having a synergistic
anti-tumor effect with conventional treatment for
some cancers, such as breast cancer and hepatocel-
lular carcinoma [21—25]. These data have brought to
light the possibility of using MGN-3/Biobran as a
supplemental treatment for cancer in adult patients.
However, no data have been reported for pediatric
tumors. Our goal was to explore the role of MGN-3/
Biobran as a NK cell stimulator against pediatric
tumors i vitro and m vivo as well as the role of
MGN-3/Biobran in NK cell expansion using various
cytokine combinations and stimulator cell lines.

CD56 microbeads;

Plus (GE Healthcare) and centrifuged at 400 g for
20 min at room temperature. The PBMCs were har-
vested from the interface and washed twice with
phosphate-buffered isotonic saline (PBS) and centri-
fuged at 400 g for 10 min. NK cells were then enriched
by magnetic bead selection (NK cell isolation KIT or
Miltenyi Biotec) (see online
supplementary Figure 1 for reviewers). Whole blood
was layered on top of a Ficoll cushion and centrifuged at
1800 rpm for 30 min at room temperature. The
lymphocyte/monocytic fraction was isolated, washed
with PBS and subjected to red blood cell lysis (ammo-
nium chloride solution; Stem Cell Technologies) for 5
min at room temperature, and following an additional
wash with PBS, monocytes were cultured under
adherent conditions in RPMI 1640 medium (Gibco-
BRL, Life Technologies Ltd) supplemented with 10%
fetal bovine serum in a humidified atmosphere with 5%
CO, at 37°C. Adherent monocytes were cultured for
7—10 days to allow for differentiation into macrophages.
Macrophages were used as biosensors to identify the

optimal dose of MGN-3/Biobran to stimulate NK cells

Methods

Cell preparation

T . . . Reagents
Our local institutional ethics committee approved this &

study. peripheral blood mononuclear cells (PBMCs)
were isolated by density gradient centrifugation from
blood samples taken from healthy volunteers. Blood was
gently layered onto an equal volume of Ficoll-Paque

Table I. Biobran and IL.-15 overnight stimulation effect on activating NK receptors.

without stimulate macrophages.

Anti-human monoclonal antibodies (mAbs) used in
the study were CD3PE-Cy7, CD45-FITC, CD69-
FITC and CD314 (NKG2D)-APC (all
Becton Dickinson); CD56-APC, CD25-PE, CD336

from

Resting Biobran IL-15
Biobran/resting IL-15/resting

MFI SD MFI SD MFI SD Ratio Ratio
CD69 508.3 889.2 1591.7 741.1 18032.6 14136.6 3.13 35.48
CD25 481 448.9 1537 520.3 1864 2843.8 3.2 3.88
NKG2D 4634.2 5762 5074.3 4761 9914.9 11491 1.09 2.14
DNAM 1960.6 2529 2501.1 1174 3344.8 5391 1.28 1.71
NKp44 1017.7 1473 1808 2780 886.3 2110 1.78 0.87
NKp30 1300.7 1990 1519.8 2508 4971.5 1567 1.17 3.82
NKp46 1134.4 1044 1159.4 1695 1568.8 1187 1.02 1.38
TLR4 2654 2858 1348 2533 1963 2150 0.51 0.74
TLR9 5854 6284 5200 6448 8779 6231 0.89 1.50

Data express MFI, SD, and ratios from 3 healthy controls. Bold indicates statistical significance.
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(NKp44)-PE and CD335 (NKp46)-PE (all from
Beckman Coulter); CD337 (NKp30)-PE (Miltenyi
Biotec). Fluorochrome-labeled mAbs against TL.LR-4
and TLR-9 were obtained from Enzo Life Sciences
AG.

Interleukin (IL)-15 was obtained from CellGe-
nix. IL-2 (Proleukin) was obtained from Novartis.
MGN-3/Biobran was provided by Daiwa Pharma-
ceuticals Co Ltd. Lipopolysaccharide (LPS; Sigma
0127:B8) was used as toll-like receptor-4 (TLR-4)
ligand, and polymyxin B (InvivoGen) was used as an
inhibitor of LPS-induced activation of TLR-4.

Cell lines

K562 erythroleukaemia, Jurkat T lymphoid
leukaemia, A673 Ewing sarcoma (all from ATCC),
NB1691 neuroblastoma cell line (kindly provided by
Dr. A. Davidoff of St. Jude’s Children’s Research
Hospital), A-204 embryonic rhabdomyosarcoma,
RD embryonic rhabdomyosarcoma and RH-30
alveolar rhabdomyosarcoma (all from DSZM) cell
lines were used as targets for NK cell natural cyto-
toxicity assays iz ovitro. The luciferase-transduced
neuroblastoma cell line (NB1691luc) was kindly
provided by Dr A. Davidoff and was used i vitro and
in a quantitative i vivo mouse model [26,27]. Irra-
diated K562 and K562 with expression of cell
membrane-bound IL-15 and 4-1BBL (K562-mb1l5-
41BBL, kindly provided by Dr. D. Campana, Na-
tional University of Singapore) were used as feeder
cells for NK cell activation and expansion [28].

Phenorypic analysis

The surface phenotype of overnight MGN-3/Biobran
(100 pg/mL)-stimulated NK cells, overnight IL-15
(10 ng/mL)-stimulated NK cells, unstimulated NK
cells and expanded NK cells from 3 healthy adult
volunteers was determined using 6-color immuno-
fluorescent staining. We stained 5 x 10> fresh NK
cells from various conditions with appropriate mouse
anti-human monoclonal antibodies for 30 min in the
dark at 4°C. The cells were washed twice with cold
PBS, resuspended in 0.5 mL of PBS and analyzed
using a FACSCanto II flow cytometer (Becton Dick-
inson). The percentage of positive cells and mean
fluorescence intensity (MFI) ratios were determined
for each cell surface antigen. Controls were applied
using appropriate isotype control antibodies.

Cyrotoxiciry assays and NK cell stimulation

The natural cytotoxicity of NK cells was monitored
in a conventional 2-hour europium-2,2":6,2"-
terpyridine-6,6"-dicarboxylic acid release assay
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(Perkin-Elmer Wallac) as described previously
[29]. K562, Jurkat, A673, NB1691, A-204, RD
and RH-30 cell lines were used as the target cells.
In brief, target cells were labeled with a
fluorescence-enhancing ligand (bis(acetoxymethyl)
2,2':6',2"-terpyridine-6,6"-dicarboxylate). This hy-
drophobic ligand quickly penetrates the cell
membrane. Within the cell, the hydrolysis of ester
bonds results in the ligand becoming hydrophilic
and therefore unable to pass through the cell
membrane. Cytolysis, however, results in the
release of the ligand and ultimately a reaction of the
ligand with the europium to form a stable, fluo-
rescing chelate, which is evaluated fluorometrically
(Infinite F200 reader TECAN Group Ltd). The
following formulas were used to calculate sponta-
neous and specific cytotoxicity:

% Specificrelease
=(Experimental release —spontaneousrelease)/

(Maximumrelease —spontaneousrelease)x 100

% Spontaneousrelease
=(Spontaneousrelease—background)/

(Maximum release—background) x 100

NK cells from healthy volunteers were stimulated
overnight with 100 pg/mL. MGN-3/BioBran, 10 ng/
mL IL-15, 40 IU/mL or 1000 IU/mL IL-2 or with a
combination of MGN-3/Biobran and 40 IU/ml IL-2.
Cultures were performed in complete culture me-
dium (RPMI 1640 supplemented with 10% of heat-
inactivated fetal bovine serum, 100 IU/mL penicillin,
100 ng/mL streptomycin, and 2 mmol/L glutamine)
in a humidified atmosphere of 5% CO, and 95% air.
Cytotoxic activity was assessed as described earlier.

Murine model

NB-1691luc 2 x 10° neuroblastoma cells were
injected intravenously into 12-week-old NOD-scid
IL-2Rgnull mice. For the isolation of NK cells, we
used PBMCs from healthy volunteers. NK cells were
then enriched by magnetic bead selection (NK cell
isolation KIT, Miltenyi Biotech). NK cells obtained
were >90% CD3-CD56+. Fresh NK cells or NK
cells activated with 100 pg/mL. MGN-3/BioBran
overnight were used. Intravenous NK cellular ther-
apy began 7 days after the injection of tumor cells
and was performed twice a week for 4 weeks. In 2
independent experiments (4 mice per group), we
compared an untreated cohort (control group) with a
cohort receiving 1 x 10° unstimulated NK cells (NK
group) and a cohort receiving 1 x 10° NK cells


mailto:end body part
mailto:end body part
mailto:H1 Section
mailto:end H2 Section
mailto:end body part
mailto:H1 Section
mailto:end H2 Section
mailto:end body part
mailto:H1 Section
mailto:end H2 Section
mailto:end body part
mailto:end body part
mailto:H1 Section
mailto:end H2 Section

4 A. Pérez-Martinez et al.

stimulated overnight with 100 pg/mL. MGN-3/
Biobran (NK-Biobran group). Bioluminescence im-
aging was performed after the initiation of NK cell
therapy on days 7, 14, 28 and 42 after intraperitoneal
injection of 100 pL of luciferin dissolved in PBS at a
concentration of 15 mg/mlL.

Five minutes after the administration of sub-
strate, the animals were anesthetized using iso-
fluorane (induction of anaesthesia at 3% and then
maintained at 1.5%) and transferred to the Xenogen
IVIS Lumina II (Quantitative Fluorescent and
Bioluminescent Imaging, Xenogen Corporation).
Images were captured at varied exposures and the
analysis was performed using Xenogen Living Image
Software (version 3.2). For bioluminescence imaging
plots, a rectangular region of interest encompassing
the entire thorax and abdomen was applied for each
mouse and total flux (photons/s) calculated in ventral
and prone positions at 180 s exposure. This value
was scaled to a comparable background value (from a
nontumor bearing, luciferin-injected control mouse).
All experiments were conducted following the
guidelines of the Institutional Animal Care and Use
Committees according to criteria outlined in the
National Institutes of Health Guide for Care and Use
of Laboratory Animals.

NK cell activation and expansion

Expansion was achieved by 14 days of culture with or
without 100 pg/mL. MGN-3/Biobran and cytokines
(100 TU/mL IL-2 or 100 IU/mL IL-2 plus 10 ng/ml
IL-15) or additional coculture with irradiated feeder
cells consisting of K562 cells or K562-mb15-41BBL
[28]. In brief, PBMCs were obtained from 5 healthy
adult volunteers by density gradient centrifugation
(Ficoll). PBMCs were incubated in a 6-well flat-
bottom plate with or without MGN-3/Biobran and
human cytokines (IL-2, IL-2 + IL.-15) or cocultured
at 1:1.5 ratio with sublethal irradiated K562 or
K562-mb15-41BBL feeder cells. The culture me-
dium was RPMI 1640 supplemented with 10% AB
fresh frozen human plasma, L-glutamine and
penicillin-streptomycin (Biochrom). Fresh medium
was added every 2 days. After 14 days, cells were
collected and analyzed for phenotype and iz vitro NK
cell cytotoxicity.

Cytometric bead array and flow cytometer analysis
to determine TLR agonist contamination in
MGN-3/Biobran

The release of tumor necrosis factor (TNF)-a, IL-6
and IL-8 in human macrophages after exposure to
LPS (10 ng/mL) or MGN-3/Biobran (at 10, 100,
1000 and 10,000 pg/mL) was detected by cytometric

bead array technique Flex Set (BD Biosciences)
following the manufacturer’s protocol and then
analyzed by flow cytometry using a BD FACSCali-
bur flow cytometer (BD Biosciences). MGN-3/
BioBran concentration (100 pg/mL) was deter-
mined to be the highest concentration that did not
induce inflammation (elevation of TNF-a, IL-6 and
IL-8, Figure 1). MGN-3/Biobran was screened for
its potential agonistic effect on TLR-2, -3, -4, -5, -7,
-8 and 9 by InvivoGen. Because traces of LPS in
MGN-3/Biobran could increase NK cell cytotoxicity
by TLR-4 signaling, the determination of contami-
nating lipopolysaccharide/endotoxin, the TLR-4
ligand, in MGN-3/Biobran (100 pg/mL) was car-
ried out by BioChem GmbH. In addition, we
quantified LPS/endotoxin by chromogenic assay
(ToxinSensor Chromogenic LLAL. Endotoxin Assay
Kit, GenScript). Functional i vitro cytotoxicity as-
says were performed against K562 and NB1691 cell
lines as targets using LPS (10 ng/mL) as an NK cell
stimulus and polymyxin B (100 pug/mL) as an in-
hibitor of LPS-induced activation of TLLR-4. Finally,
we performed cytotoxic assays against the NB1691
cell line using MGN-3/Biobran-stimulated NK cells
with polymyxin B inhibition.

Statistical analysis

Results are shown as means + SD. Non-parametric
Wilcoxon tests were used to compare MGN-3/
Biobran effect on NK cell phenotype, cytotoxicity
and expansion rate. In the mouse model, survival was
estimated by the univariate Kaplan-Meier method
and compared using the log-rank test. Statistical
significance was defined as P < 0.05.

Results
NK phenotyping

The addition of MGN-3/Biobran-stimulated NK cells
resulted in an increase in CD69 and CD25 expression
from a median of 9%—88% and 6%—90%, respec-
tively (MFI ratio increased 3.1-fold and 3.2-fold,
respectively). The percentages and MFI of the other
receptors studied was unchanged. IL-15-stimulated
NK cells, used as a positive control, increased the
median expression of CD25 significantly (6%—92%,
MFI ratio increased 3.9-fold), CD69 (9%—98%, MFI
ratio increased 35.5-fold), NKG2D (92%—97%, MFI
ratio increased 2.1 fold), DNAM (81% to 96%, MFI
ratio increased 1.7 fold) and NKp30 (54 to 81, MFI
increased 3.8 fold). Table I and Figure 2A and B show
the response of activating receptors on NK cells to
overnight MGN-3/Biobran and IL-15 stimulation.
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Figure 2. (A) Mean fluorescence intensity from activating NK cell receptors: at rest (black), MGN-3/Biobran (red) and IL-15 stimulated
(green) in 3 healthy controls. (B) Percentages of activation markers expression on resting, MGN-3/Biobran- and IL.-15-stimulated NK cells.
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In vitro cyrotoxicity assays

Overnight stimulation with MGN-3/Biobran resul-
ted in a significant increase in NK cell cytotoxicity
against all tested cell lines at an E/T ratio of 8:1
(K562, NB1691, Jurkat, A673) or 10:1 (A-204, RD,
RH-30) compared with resting NK cells (Figure 3A,
K562 80% vs. 69%, P = 0.03, NB1691 41% vs.
23%, P = 0.03, Jurkat 40% vs. 19%, P = 0.03, A673
34% vs. 13%, P = 0.02, A204 34% vs. 18%, P =
0.03, RD 45% vs. 22%, P = 0.002, RH-30 34% vs.
18%, P = 0.02). Stimulation with IL.-15 led to even
higher percentages of lysis of the K562 (100%),
NB1691 (61%), Jurkat (60%) and A673 (58%) cell
lines (Figure 3B). To test the synergistic effect of IL-
2 and MGN-3/Biobran, we compared stimulation
with high-dose IL-2 (1000 IU/mL) with low dose IL-
2 (40 IU/mL) and low dose IL-2 + MGN-3/Biobran.
Adding MGN-3/Biobran to low dose IL-2 further
enhanced the stimulatory effect of 40 IU/mL IL-2
and resulted in comparable cytotoxicity to that ob-
tained with 1000 IU/mL IL-2 (Figure 3C). To test
the safety profile of MGN-3/Biobran-stimulated NK
cells, we performed cytotoxicity assays on negative
controls (autologous CD56 negative cells), which
revealed an absence of cytotoxicity (supplementary
Figure 2 and supplementary Table I for reviewers).

In vivo model

To examine whether the stimulated effect of MGN-
3/Biobran on NK cells i wvitro has clinical signifi-
cance, we then extended our investigation to an
n vivo xenograft model of luciferase-transfected
neuroblastoma. Figure 4A shows ventral and dorsal
bio-images of 3 representative mice receiving PBS
(control), 1 x 10° unstimulated NK cells and 1 x
10° MGN-3/Biobran-stimulated NK cells. There
was a dramatic progression of the NB1691 tumors in
the control group and unstimulated NK cell group,
whereas significant neuroblastoma growth inhibition
was observed in the cohort that received 1 x 10°
MGN-3/Biobran-stimulated NK cells (Figure 4B
and supplementary Table II for reviewers). We also
observed that MGN-3/Biobran-stimulated NK cells
significantly increased survival in the NOD/scid/IL-
2Rynull-hu model (P < 0.05; Figure 4C).

Role of MGN-3/Biobran in expansion of NK cells

After 2 weeks of culture, NK cells expanded more
strongly when MGN-3/Biobran was added to the
culture medium (supplementary Table III). In
contrast, T-cell expansion was decreased when
MGN-3/Biobran was added to the culture medium
(Figure 5A). MGN-3/Biobran addition to IL-2
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Figure 3. (A) MGN-3-stimulated NK cell cytotoxic activity against
K562, NB1691, Jurkat and A673 cell lines (effector/target ratio 8:1),
A-204, RD and RH-30 (effector/target 10:1). (B) IL-15 and MGN-3-
stimulated NK cell cytotoxic activity against K562, NB1691, Jurkat
and A673 cell lines (effector/target ratio 8:1). (C) IL-2- and MGN-3-
stimulated NK cell cytotoxic activity against A-204, RD and RH-30
(effector/target 10:1). Data include results from 3 healthy volun-
teers in 3 independent experiments. *Statistically significant.

and IL-2 + IL-15 cultures did not produce a sta-
tistically significant difference in NKT cells and B
cells. The cytotoxic activity of expanded NK cells
did not significantly change when MGN-3/Biobran
was added to the culture medium (Figure 5B). In
contrast, the addition of IL.-15 enhanced cytotox-
icity compared with IL-2 alone, even when using
transfected K562 cell line.

Mechanisms of MGN-3/Biobran stimulation on NK cells

Because human NK cells can be stimulated by
TLRs, we tested TLR triggering by MGN-3/Biobran
using human macrophages as biosensors to identify
the optimal dose of MGN-3/Biobran to stimulate
NK cells without stimulate macrophages. Only high
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volume relative to baseline values was significantly lower in the cohort of mice that received MGN-3-stimulated NK cells than in either the
control group or the group that received resting NK cells. (C) Kaplan-Meier curves indicate the survival of each group of mice. ‘Statistically
significant compared with control group. Statistically significant compared with unstimulated NK cells group. * Statistically significant

compared with both groups.

levels of MGN-3/Biobran (10 mg/mL) resulted in the
release of IL-8, IL.-6 and TNF-a (4776, 164 and 132
and pg/ml, respectively), see Figure 1. These mea-
surements were significantly lower than those
observed with LPS (10 ng/mL) stimulation (7487,
362 and 208 pg/mL, respectively).

We observed traces (Eu/mL = 1.68) of LPS
contamination in MGN-3 Biobran in a limulus
amebocyte lysate (ILAL) assay. To investigate the role
of LPS contamination of MGN-3/Biobran as a
mechanism of stimulation, we determined i wvitro
cytotoxicity assays against NB1691. These assays
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Figure 5. (A) Kinetics of total cells, NK cells, T cells, NKT cells and B cells after 14 days of culture expansion from 5 healthy donors with
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K562-mb15-41BBL. *Statistically significant. (B) Cytotoxic activity of expanded NK cells adding MGN-3/Biobran to the culture medium.

showed increased cytotoxic activity of LPS-stimulated
NK cells compared with resting NK cells, whereas
polymyxin B abrogated the effect of LPS stimulation
(Figure 6A). In contrast, the stimulating effect of
MGN-3/Biobran on NK activity against NB1691
could not be antagonized with polymyxin B
(Figure 6B). The mechanism of NK stimulation is not
mediated by LPS contamination in MGN-3/Biobran.

Discussion

Published findings have shown that the use of MGN-
3/Biobran in cancer therapy can improve outcomes
in some adult cancer patients [30,31]. A clinical trial
of adult patients with hepatocellular carcinoma

showed that the addition of MGN-3/Biobran to
interventional therapies including transarterial che-
moembolization, percutaneous ethanol injection,
radiofrequency ablation and cryoablation improved
overall survival [21]. It has also been reported that
the addition of MGN-3 stimulated innate immunity
in multiple myeloma patients by increasing NK cell
cytotoxic activity, levels of myeloid DCs and con-
centrations of T helper cell type 1—related cytokines
[32]. There is no reported data regarding the use of
MGN-3/Biobran with pediatric tumors.

Our study shows that MGN-3/Biobran stimulation
of NK cells improved both iz vitro and in vivo cytotoxic
activity against various pediatric tumor cell lines. We
demonstrated increased NK cell mediated killing
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of acute leukaemia, neuroblastoma, Ewing sarcoma,
embryonic rhabdomyosarcoma and alveolar rhabdo-
myosarcoma cell lines # vitro after stimulation with
MGN-3/Biobran. We also observed a significant inhi-
bition of neuroblastoma growth and a significant
improvement in survival in a NOD/scid/IL-2Rynull
neuroblastoma model when using MGN-3/Biobran-
stimulated NK cells. These data are in agreement with
previous data published on adult malignancies [20—25].

The mechanism and dose by which MGN-3/
Biobran increases NK cell activity remains un-
known. We suggest that a variety of immune mech-
anisms may be involved in the beneficial effect
observed with MGN-3/Biobran treatment of NK
cells. Because high doses of MGN-3/Biobran resul-
ted in modifying macrophages from MO to Ml

without feeder
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releasing I1-6, IL-8 and TNF-0, we considered a
low dose of MGN-3/Biobran to remove the NK cell
activation caused by an inflammatory background.
Because TLR agonists can stimulate human NK
cells, we hypothesized that LPS contamination in
MGN-3/Biobran could increase NK cell cytotoxicity
by TLR-4 signaling. In our study, a small amount of
LPS contamination was observed. However,
neutralizing LPS with polymyxin B did not abrogate
the stimulating effect of MGN-3/Biobran on NK
activity, suggesting that LPS contamination is not the
mechanism through which MGN-3/Biobran stimu-
lates NK cells. According to our data, MGN-3/
Biobran appears to activate resting NK cells, but it
is unable to further activate cells undergoing expan-
sion with IL-15, despite augmenting expansion
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Figure 6. (A) LPS-stimulated NK cells increase resting NK cell
cytotoxicity against NB1691 and polymyxin B abrogates LPS
stimulation to a resting state. (B) MGN-3/Biobran stimulates NK
cells against NB1691 that is not antagonized by polymyxin B.

during this period. This outcome suggests a mecha-
nism that partially overlaps with IL.-15. Another
theory is an apoptotic effect mediated by activation of
NK cells releasing TNF-a and IFN-y [30,33]. This
theory is supported by recently reported data that the
addition of MGN-3/Biobran to chemotherapy had a
synergistic effect, as evidenced by enhanced
apoptosis and cell proliferation inhibition in breast
cancer cells [34]. Another possible mechanism could
be the augmentation of activating receptors on NK
cells stimulated with MGN-3/Biobran. We observed
an increase of the activation-associated receptors
CD69 and CD25 on MGN-3/Biobran-stimulated
NK cells of healthy donors. CD69 elevation on NK
cells correlates with an increase in NK cell cytotox-
icity [35—37]. In addition, proliferative potential is
indicated by CD25 expression elevation on NK cells
[38]. Lastly, MGN-3/Biobran interaction with other
immune cells has been also reported [39,40].

The adoptive transfer of i virro—activated NK cells
is currently used for cancer therapy. Recent studies
have demonstrated that NK cells can be expanded to
large numbers ex v1v0 using various methods, including
using K562-mb15-41BBL as feeder cells [28]. These
expanded NK cells exerted antitumor activity i wvitro
on a variety of cell lines and malignancies including
adult and pediatric cancers [41—43]. When we added
MGN-3/Biobran in various expansion protocols, we
observed an improvement in the expansion of NK
cells, a retention of cytotoxic activity and a reduction in
T-cell proliferation. These data could be important for

large-scale expansion of highly cytotoxic clinical-grade
NK cells, especially in an allogeneic setting where T
cells should be removed to avoid graft versus host
disease. Additionally, using MGN-3/Biobran in com-
bination with low-dose II.-2 increased NK cell cyto-
toxic activity to the same level as high dose IL-2. These
data are in accordance with earlier studies [44].
Therefore, MGN-3/Biobran and low dose IL-2 act
synergistically and this approach can avoid toxicities
related to high dose II.-2 treatment i vivo.

Data from adult patient studies have suggested
that the use of MGN-3/Biobran as an alternative or
adjuvant treatment to various immunotherapeutic
approaches may be beneficial in the treatment of
malignancy [20,22,24]. Our results extend to the
pediatric patient population, as demonstrated by an
increase in NK cell cytotoxic activity with the addi-
tion of MGN-3/Biobran against a variety of pediatric
tumors i vitro and neuroblastoma i vive. We also
observed that the addition of MGN-3/Biobran
increased NK cell expansion/activation and, in
combination with a low-dose of IL.-2, has a beneficial
effect on activating NK cells for the purpose of
immunotherapy against neuroblastoma. Further
studies are warranted in the pediatric clinical setting
to elucidate the role of MGN-3/Biobran in combi-
nation with chemo-immune protocols.
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